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[1] This paper presents a statistical model to forecast
seasonal tropical cyclone activity. In order to give a
comprehensive view of seasonal tropical cyclone activity,
we include not only the number of total tropical cyclones but
also the number of typhoons and the NTA (Normalized
Typhoon Activity) index as the predictands. The model is
based on a multiple linear regression model in which the final
predictors are selected with respect to minimizing the
prediction error rather than simply fitting with past data.
The model is expanded into ensemble prediction by
considering the uncertainty of the single and deterministic
forecast. The probability forecast based on the ensemble
model shows reasonably good skill with respect to reliability
and relative operating characteristics. Citation: Kwon, H. J.,

W.-J. Lee, S.-H. Won, and E.-J. Cha (2007), Statistical ensemble

prediction of the tropical cyclone activity over the western North

Pacific, Geophys. Res. Lett., 34, L24805, doi:10.1029/

2007GL032308.

1. Introduction

[2] Even though the western North Pacific is the ocean
basin where tropical cyclones (TC) are most active in the
whole world, the seasonal prediction problem in this area is
relatively unexplored. Two well-known typhoon centers
in this basin, namely, the RSMC (Regional Specialized
Meteorological Center) Tokyo and the JTWC (Joint Typhoon
Warning Center) provide only track and intensity forecasts
for an individual TC but do not issue the seasonal
prediction.
[3] Since the pioneering work on seasonal prediction of

TC activity by Nicholls [1979, 1984, 1985] over the two
Australian basins, the problem of seasonal prediction has
expanded into the North Atlantic [Gray et al., 1992, 1993,
1994] and western North Pacific [Chan et al., 1998, 2001].
These studies are based on the statistical relationships
between the interannual variations of TC frequency and
the atmospheric/oceanic signals such as El-Nino, Southern
Oscillation, Quasi-Biennial Oscillation, etc. Although there
are many reports on the strong relationship between ENSO
(El Nino/Southern Oscillation) and tropical cyclone fre-
quency over the North Atlantic [e.g., Pielke and Landsea,
1999, and references therein] leading to great success in the
seasonal outlook of NOAA (National Oceanic and Atmo-
spheric Administration), the relationship is not clear over

the western North Pacific, at least for the number of TCs.
For example, Lander [1994] reported that observed annual
tropical cyclone totals in the western North Pacific are
virtually uncorrelated with any ENSO indices. Nevertheless,
the predictions issued by Chan’s team since 1998 turn out to
be quite successful by including many predefined monthly
indices as the predictor, including the ENSO indices issued
by Climate Prediction Center and by China Meteorological
Administration.
[4] The other track in the seasonal prediction of TC

activity is utilizing the global numerical model [Vitart et
al., 1997; Vitart and Stockdale, 2001; Vitart, 2005;
Camargo and Zebiak, 2002; Camargo and Sobel, 2004].
By detecting and counting the model-generated hurricane-
like vortices in the numerical model which runs several
months ahead of the forecast base time and by scaling the
systematic differences between the model climatology and
observations, modelers extract the conclusion on the sea-
sonal outlook of the tropical cyclone.
[5] In this study, a prototype statistical model presented

by Lee et al. [2007] is expanded to an ensemble prediction
by taking into account the uncertainty of the deterministic
forecast by a single model and generating thirty ensemble
members based on the original model. The ensemble
prediction makes the categorical and probability forecasts
possible. This statistical ensemble model is applied to many
predictands such as the number of total TCs, number of
typhoons, and a TC activity index that considers the
duration and intensity of the TCs in order to give a
comprehensive understanding of tropical cyclone activity
over the western North Pacific, specifically the responsible
area of RSMC Tokyo (100–180�E, 0–60�N).

2. Methodology

2.1. Predictands and the NTA Index

[6] In order to understand TC activity in a comprehensive
manner, we need to include not only the number of total
TCs but also the number of typhoons (TY) and a certain TC
activity index that considers the duration and the intensity of
the storms. In this study we present the NTA (Normalized
Typhoon Activity) index as similar to the ACE (Accumu-
lated Cyclone Energy),

NTA ¼
X 1

4
Vmax=VTYð Þ2 ð1Þ

where Vmax is the maximum wind and VTY is TY wind
speed, i.e., 64 kt. The normalized TC energy with respect to
TY is again divided by four, given the fact that TC
information is issued four times a day. This representation is
easier to understand than ACE, which is simply the sum of
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the square of the maximum wind so that the unit becomes kt
squared. We may compare two extreme examples (Tracks
are not shown for brevity). While the lifespan of the eighth
TC in 1988 was very short and the intensity was weak, that
of the thirteenth TC in 1987, Freda, was very long, its
intensity was very strong, and the maximum wind during its
lifespan was recorded as 107 kt from 18 UTC September 9
to 12 UTC the next day. At that time the RSMC did not
include the wind data in the TC advisory so we converted
the central pressure into wind with the use of a wind-
pressure conversion table. In our current representation, the
NTA of the former and the latter TCs is 0.3 and 17.5,
respectively. This means that the former TC may be
considered to have lasted 0.3 days as a 64 kt TC and the
latter TC 17.5 days. The correlation between the annual
number of total TCs and the NTA index for the period from
1951 to 2006 is only 0.496, which means that there are wide
discrepancies between the interannual fluctuations of the
two variables (figure not shown for brevity). This also
makes very clear the need to define the NTA index in order
to have a comprehensive understanding of TC activity. For
these reasons, we need to include not only the number of
total TCs and the TCs that exceed the TY strength as the
predictands, but also the NTA index in a seasonal
prediction. In addition, we predict the number of TCs that
will affect Korea, requiring the KMA’s official seasonal
forecast.
[7] For the predictand data such as the number of TCs

and the NTA index we have used the best track from the
RSMC (Regional Specialized Meteorological Center)
Tokyo and the monthly data from NCEP/CPC (National
Center for Environmental Protection/Climate Prediction
Center) are used in obtaining the predictors. Data prior to
1970 are not used in the analysis since the TC intensity
analyses were not trustworthy at that time [Kwon et al.,
2006].

2.2. Potential Predictors, Predictor Candidates,
and Smart Predictors

[8] The prototype model for this statistical prediction has
been presented by Lee et al. [2007]. The model consists
mainly of three parts, i.e., the potential predictors, the
predictor candidates and the smart predictors. Only a brief
description of the model is given in this paper. Instead of
using the predefined large-scale monthly indices such as the
Western Pacific Index, ENSO-related indices, the Arctic
index, etc., released from the climate centers, we have
searched for the predictors independently. First, by exam-
ining the lag correlation patterns between the predictands
and the synoptic variables such as the sea surface temper-
ature, the mean sea level pressure, 850 hPa temperature,
meridional wind and 500 hPa geopotential, we choose the
geographical points which show high correlations. The
magnitude of the correlations is very different depending
upon the combination of the predictands and the synoptic
variables as well as the location. It is found that there are
several geographic locations that show a significantly high
correlation. For example, it is found that the correlation
between the March mean sea level pressure at 87.5oW,
5.0oN and the TC frequency from May to December is as
high as 0.619. In this way, we collect as many variables as
possible that show a correlation coefficient higher than 0.4.

We refer to these as the potential predictors. The numbers
of the total potential predictors vary from approximately
thirty to fifty depending upon the combination of the
predictands and the synoptic variables. The correlation
coefficients of all potential predictors are more than 95%
statistically significant by the student-t test. Readers may
read Lee et al. [2007] for further details (http://www.apjas.
org).
[9] The simplest way of constructing the model is to

include all potential predictors in the regression equation,
which should guarantee the best fit of past data but does not
necessarily mean the best prediction. We take a different
strategy. We try to find the predictor set among all potential
predictors that has produced the best prediction in the past.
In other words, we find a set of predictors that minimizes
the PRESS (PRediction Error in Sum of Squares),

PRESS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
t¼1

ft � ytð Þ2
s

ð2Þ

where n is the number of the prediction, ft and yt are
predicted and observed values, respectively. We call them
the smart predictors. In order to find the smart predictors,
we take the following steps. We construct all possible
regression equations that fit the past-year data over a certain
period - normally 30 years, apply the equations to the
prediction for the next year, and compare the predicted
values (ft) with the observed values (yt). This procedure is
repeated with the one-year shift of the model construction
and verification until the most recent year. The model that
gives the minimum PRESS for the validation period is
finally selected and the predictors of the model are called
the smart predictors. Since the model that consists of the
smart predictors proves to be smart for the earlier
predictions, that smartness will presumably continue in real
predictions in the future.
[10] What ’possible’ in the previous paragraph means is

the inclusion of every combination out of the given number
of potential predictors. For example, if the number of the
potential predictors is 30, there are 230-1 combinations out
of the thirty potential predictors, so that we need to
construct 230-1 regression equations, which are too large
to handle. To reduce the regression equations to a feasible
number, we set a limit of three predictors per each of the
five synoptic variables, which reduces the total number of
predictors to 15. We call them the predictor candidates. We
have chosen them among all potential predictors in such a
way that the lag month is closest to the current month of
prediction per each synoptic variable. Now that we have
reduced the predictors to a manageable number, we examine
215-1 regression equations and check which regression
equation (model) performed the best prediction based on
past data in terms of minimizing the PRESS.

2.3. Ensemble Prediction

[11] When the model described above was applied to the
seasonal prediction of TC frequency over several specific
periods from May to December, from June to August, from
September to November depending upon the user’s need, it
is found that the model does show some skill in the
prediction of TC frequency [Lee et al., 2007]. These
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specific time intervals are chosen in accordance with the
Korea Meteorological Administration’s (KMA) forecast
schedule. KMA releases the official three-month seasonal
forecasts for tropical cyclones at the end of May and August
so that the guidance should be delivered in the early part of
the corresponding months.
[12] In order to alleviate a certain danger in a single

deterministic forecast, we adopt the probability and category
forecast based on the ensemble prediction. Thirty ensemble
members are generated as follows (Figure 1). After the 30–
50 potential predictors are selected, three different sets of
the predictor candidates are carefully chosen. The first

choice is the selection of the predictors that show the
highest correlation coefficients regardless of the lag months.
Second is the selection of the predictors in such a way that
the lag month becomes close to the current month of the
predictand. Another way may be a subjective choice. The
first two choices are for the high correlation and for the close
lag month. This procedure is straightforward. But when we
examine such chosen predictors, some predictors are too far
from the predictand in terms of the geographical location
and the lag month. Such predictors are replaced by other
predictors which have opposite characteristics, whereby
one’s intuition may be somewhat involved.
[13] As stated above, the smart predictors are selected so

that the regression equation based on those predictors yields
the best performance in the past prediction. The perfor-
mance of this past prediction may vary depending upon the
verification periods from the most recent years to past
several years. Thus, we have made ten ensemble members
per each of the three sets of the predictor candidates by
applying to the ten verification periods. Specifically the
verification periods are from the most recent two years to
the past eleven years, which would produce ten ensemble
members per each of the three predictor candidates.

3. An Example of Categorical Probabilistic
Prediction

[14] Figure 2 shows an example of the ensemble predic-
tion. Among many predictands, the result for only the
number of total TCs during the three fall months (Sep.–
Nov.) is shown. The grey bars represent the observations
and the white bars represent the predictions whose frequen-
cies are shown on the left and right axes. The TC frequen-
cies observed during 50 years (1951–2000) constitute

Figure 1. Flow chart of constructing the model and
producing 30 ensemble members.

Figure 2. Ensemble prediction for the number of TCs during the three fall months (SON). The grey bars represent the
observations and the white bars represent the predictions whose frequencies are shown on the left and the right axes. The
range of the three terciles based on the 50-year climatology is indicated at the bottom.
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background climatology for defining the upper (AN: Above
Normal), middle (NN: Near Normal) and lower (BN: Below
Normal) terciles. The normal range of this case is 10.4–
12.4, as indicated in the lowest part of Figure 2.
[15] The ensemble prediction states that among all 30

members, two indicate that six TCs will appear during SON,
six say seven TCs, ten say eight TCs, seven say nine TCs,
four say 10 TCs, and one says 11 TCs. From a probabilistic
viewpoint, 29 members out of a total of 30 members (96.7
percent) indicate that the number of TCs that would be
generated during the fall of 2006 would be less than or
equal to 10, which is in the below normal range. Mean-
while, only 1 member (3.3 percent) predicts a number in the
near normal range, and none (zero percent) predicted an
above normal number. The average number of TCs pre-
dicted by all 30 members, i.e., the ensemble mean value, is
8.2, which is denoted by the open cyclone symbol. The
observed TC frequency during this period was nine (closed

TC symbol), which is very close to the predicted ensemble
mean value and falls within the tercile of the largest
categorical probability forecast. All predictions are not as
good as the example shown above. The next section
describes this statistical ensemble prediction’s overall per-
formance for all the forecast cases.

4. Verification

[16] Ensemble predictions for all predictands for the year
2006 have been carried out. Table 1 shows the performance
of the 11 ensemble predictions in terms of the difference
between the ensemble mean and the observed value. Most
forecasts show reasonably good results, except a few cases
whose error is close to or exceeds one standard deviation,
noted with bold letters.
[17] In verifying the ensemble prediction’s performance,

we have checked the reliability [Atger, 1999] to ensure that
the categorical probability forecast is reliable. The reliability
is checked for all predictands by comparing the forecast
probability category coinciding with the corresponding
observed relative frequency for all terciles (Figure 3, left).
The grey bars show the frequency with which each prob-
ability is actually forecast. In constructing the reliability
diagram, the forecast and observed probability are counted
for every 10 percent for all events to which this ensemble
prediction is applied. The reliability line approximately
follows the diagonal – perfect reliability, which means that
this probability forecast is indeed reliable. Some over-
forecasting tendencies appear over the range of high prob-
ability, and vise versa for the lower side. The bias calculated
with 1=n

P
Ni yi � oið Þ2 turns out to be 0.006, which shows

slight but negligible over-forecasting, where n is the total
number of events, Ni is the number of events of each
forecast probability, yi is the forecast probability category

Table 1. Summary of the 2006 TC Activity Predictions

PRED
(ENS MEAN) OBS ERROR

MAY–DEC
TC 26.9 23 3.9
TY 14.3 14 0.3
NTA 146.6 148.5 �1.9

JUN–AUG
TC 13.5 11 2.5
TY 5.7 5 0.7
NTA 32.3 55.7 �23.4
TC (Korea) 3.0 2 1.0

SEP–NOV
TC 8.2 9 �0.8
TY 6.3 7 �0.7
NTA 62.3 70.8 �8.5
TC (Korea) 1.2 1 0.2

Figure 3. (left) Reliability and (right) ROC of the ensemble prediction. The grey bars in Figure 3 (left) show the relative
frequency with which each probability is actually forecast. The HR/FAR line of the single forecast is also shown in Figure 3
(right).
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and oi is the mean observed events per each forecast
probability category.
[18] Relative operating characteristics (ROC) is one of

the standard verification tools used to measure the perfor-
mance of the ensemble prediction based on the signal
detection theory [Swets, 1973]. ROC compares the hit rate
(HR) and the false alarm rate (FAR) for every forecast
probability. It is independent of reliability because the
results are insensitive to forecast bias [Richardson, 2000].
We obtain the ROC curve (Figure 3, right) by calculating
the HR and the FAR for every 10 forecast probability
categories with the use of the same verification data as
the reliability diagram. The forecast becomes perfect when
all the points on the curve concentrate toward the upper left
corner. The diagonal means no skill, where the hit rate is
equal to the false alarm rate. Figure 3 (right) shows the ROC
curve for all forecast probabilities, terciles and predictands,
as in Figure 3 (left). The ROC curve shows that HR is larger
than the FAR for all cases. The area under the ROC curve is
0.912, which is a high forecast performance, and is an even
higher value than Lee et al.’s [2007] single forecast (0.820).

5. Summary

[19] This paper presents a probability forecast of seasonal
TC activity based on the ensemble statistical model. In order
to give a comprehensive view of seasonal TC activity, we
include not only the total number of TCs, but also the
number of typhoons and the NTA index as predictands.
[20] The model is based on the multiple linear regression

model. The model’s uniqueness is that: (1) we have chosen
the predictors in order to maximize the predictability, rather
than using the pre-established monthly climate indices
issued by climate centers; (2) the final smart predictors
are carefully selected in terms of minimizing the PRESS;
and (3) 30 ensemble members are generated to yield the
probability forecast. Probability is obtained for each tercile
(Above Normal, Near Normal, Below Normal) by counting
the number of predictions that fall within the range of each
tercile.
[21] We have checked the prediction performance not

only by comparing the ensemble mean to the observed
value, but also by checking the forecast probabilities on
each tercile with the observed frequencies. The most com-
prehensive view of the model’s performance can be seen in
the reliability and ROC diagram (Figure 3), which utilize
the same forecast results in Table 1. The probability forecast
shows reasonably good skill with respect to reliability and
relative operating characteristics. In large part, the reliability
curve is aligned along the diagonal, which proves it to be
reliable. In the ROC curve, the hit rate is much larger than
the false alarm rate in most of the forecasts. Because we use
data prior to 2006 to build the model to maximize the
prediction skill and the prediction is made only for 2006, the
model performance shown in Figure 3 is based only on

1 year. Much more years would be needed for the true
assessment of the skill of this new model.

[22] Acknowledgments. This work was funded by the Korea Mete-
orological Administration Research and Development Program under Grant
CATER 2007–2310. We deeply appreciate the valuable comments by the
two anonymous reviewers for improving the paper.

References
Atger, F. (1999), The skill of ensemble prediction systems, Mon. Weather
Rev., 127, 1941–1953.

Camargo, S. J., and A. H. Sobel (2004), Formation of tropical storms in an
atmospheric general circulation model, Tellus, Ser. A, 56, 56–67.

Camargo, S. J., and S. E. Zebiak (2002), Improving the detection and
tracking of tropical cyclones in atmospheric general circulation models,
Weather Forecasting, 17, 1152–1162.

Chan, J. C. L., J. E. Shi, and C. M. Lam (1998), Seasonal forecasting of
tropical cyclone activity over the western North Pacific and the South
China Sea, Weather Forecasting, 13, 997–1004.

Chan, J. C. L., J. E. Shi, and K. S. Liu (2001), Improvements in the
seasonal forecasting of tropical cyclone activity over the western North
Pacific, Weather Forecasting, 16, 491–498.

Gray, W. M., C. W. Landsea, P. W. Mielke Jr., and K. J. Berry (1992),
Predicting Atlantic seasonal hurricane activity 6–11 months in advance,
Weather Forecasting, 7, 440–455.

Gray, W. M., C. W. Landsea, P. W. Mielke Jr., and K. J. Berry (1993),
Predicting Atlantic basin seasonal tropical cyclone activity by 1 August,
Weather Forecasting, 8, 73–86.

Gray, W. M., C. W. Landsea, P. W. Mielke Jr., and K. J. Berry (1994),
Predicting Atlantic basin seasonal tropical cyclone activity by 1 June,
Weather Forecasting, 9, 103–115.

Kwon, H. J., S.-H. Won, and S. K. Park (2006), Climatological differences
between the two typhoon centers’ tropical cyclone information in the
western North Pacific, J. Korean Meteorol. Soc., 42, 183–192.

Lander, M. A. (1994), An exploratory analysis of the relationship between
tropical storm formation in the western North Pacific and ENSO, Mon.
Weather Rev., 122, 636–651.

Lee, W.-J., J.-S. Park, and H. J. Kwon (2007), A statistical model for
prediction of the tropical cyclone activity over the western North Pacific,
J. Korean Meteorol. Soc., 43, 175–183.

Nicholls, N. (1979), A possible method for predicting seasonal tropical
cyclone activity in the Australian region, Mon. Weather Rev., 107,
1221–1224.

Nicholls, N. (1984), The southern oscillations, sea-surface temperature, and
interannual fluctuations in Australian tropical cyclone activity, J. Clima-
tol., 4, 661–670.

Nicholls, N. (1985), Predictability of interannual variations of Australian
seasonal tropical cyclone activity, Mon. Weather. Rev., 113, 1144–1149.

Pielke, R. A., Jr., and C. N. Landsea (1999), La Niña, El Niño, and Atlantic
hurricane damages in the United States, Bull. Am. Meteorol. Soc., 80,
2027–2033.

Richardson, D. S. (2000), Skill and economic value of the ECMWF en-
semble prediction system, Q. J. R. Meteorol. Soc., 126, 649–668.

Swets, J. A. (1973), The relative operating characteristic in psychology,
Science, 182, 990–999.

Vitart, F. (2005), Seasonal forecasting of tropical storm frequency using a
multi-model ensemble, Q. J. R. Meteorol. Soc., 132, 647–666.

Vitart, F., and T. N. Stockdale (2001), Seasonal forecasting of tropical
storms using coupled GCM integration, Mon. Weather Rev., 129,
2521–2537.

Vitart, F., J. L. Anderson, and W. F. Stern (1997), Simulation of interannual
variability of tropical storm frequency in an ensemble of GCM integra-
tions, J. Clim., 10, 745–760.

�����������������������
E.-J. Cha, Typhoon and Asian Dust Team, Korea Meteorological

Administration, 45 Gisangcheong-gil, Dongjak-gu, Seoul 156-720, Korea.
H. J. Kwon, W.-J. Lee, and S.-H. Won, Department of Atmospheric

Sciences, Kongju National University, Kongju, Chungnam 314-701, Korea.
(hjkwon@kongju.ac.kr)

L24805 KWON ET AL.: SEASONAL TC PREDICTION MODEL L24805

5 of 5


